Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 936
Filtrar
1.
J Virol Methods ; 323: 114838, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37914041

RESUMEN

In influenza A virus-infected cells, newly synthesized viral neuraminidases (NAs) transiently localize at the host cell Golgi due to glycosylation, before their expression on the cell surface. It remains unproven whether Golgi-localized intracellular NAs exhibit sialidase activity. We have developed a sialidase imaging probe, [2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenyl]-α-D-N-acetylneuraminic acid (BTP9-Neu5Ac). This probe is designed to be cleaved by sialidase activity, resulting in the release of a hydrophobic fluorescent compound, 2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenol (BTP9). BTP9-Neu5Ac makes the location of sialidase activity visually detectable by the BTP9 fluorescence that results from the action of sialidase activity. In this study, we established a protocol to visualize the sialidase activity of intracellular NA at the Golgi of influenza A virus-infected cells using BTP9-Neu5Ac. Furthermore, we employed this fluorescence imaging protocol to elucidate the intracellular inhibition of laninamivir octanoate, an anti-influenza drug. At approximately 7 h after infection, newly synthesized viral NAs localized at the Golgi. Using our developed protocol, we successfully histochemically stained the sialidase activity of intracellular viral NAs localized at the Golgi. Importantly, we observed that laninamivir octanoate effectively inhibited the intracellular viral NA, in contrast to drugs like zanamivir or laninamivir. Our study establishes a visualization protocol for intracellular viral NA sialidase activity and visualizes the inhibitory effect of laninamivir octanoate on Golgi-localized intracellular viral NA in infected cells.


Asunto(s)
Antivirales , Inhibidores Enzimáticos , Virus de la Influenza A , Neuraminidasa , Proteínas Virales , Humanos , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Neuraminidasa/análisis , Neuraminidasa/antagonistas & inhibidores , Imagen Óptica/métodos , Zanamivir/farmacología , Proteínas Virales/análisis , Proteínas Virales/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología
2.
J Virol ; 97(10): e0060223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754760

RESUMEN

IMPORTANCE: Influenza A viruses (IAVs) contain hemagglutinin (HA) proteins involved in sialoglycan receptor binding and neuraminidase (NA) proteins that cleave sialic acids. While the importance of the NA protein in virion egress is well established, its role in virus entry remains to be fully elucidated. NA activity is needed for the release of virions from mucus decoy receptors, but conflicting results have been reported on the importance of NA activity in virus entry in the absence of decoy receptors. We now show that inhibition of NA activity affects virus entry depending on the receptor-binding properties of HA and the receptor repertoire present on cells. Inhibition of entry by the presence of mucus correlated with the importance of NA activity for virus entry, with the strongest inhibition being observed when mucus and OsC were combined. These results shed light on the importance in virus entry of the NA protein, an important antiviral drug target.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Neuraminidasa , Receptores Virales , Proteínas Virales , Internalización del Virus , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/enzimología , Virus de la Influenza A/metabolismo , Gripe Humana/enzimología , Gripe Humana/metabolismo , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Unión Proteica , Receptores Virales/metabolismo , Especificidad por Sustrato , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Línea Celular , Moco
3.
Nature ; 618(7965): 590-597, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258672

RESUMEN

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Imitación Molecular , Neuraminidasa , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Especificidad de Anticuerpos/inmunología , Arginina/química , Dominio Catalítico , Hemaglutininas Virales/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/enzimología , Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Ácidos Siálicos/química
4.
J Biol Chem ; 299(2): 102891, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634846

RESUMEN

Influenza A viruses and the bacterium Streptococcus pneumoniae (pneumococci) both express neuraminidases that catalyze release of sialic acid residues from oligosaccharides and glycoproteins. Although these respiratory pathogen neuraminidases function in a similar environment, it remains unclear if these enzymes use similar mechanisms for sialic acid cleavage. Here, we compared the enzymatic properties of neuraminidases from two influenza A subtypes (N1 and N2) and the pneumococcal strain TIGR4 (NanA, NanB, and NanC). Insect cell-produced N1 and N2 tetramers exhibited calcium-dependent activities and stabilities that varied with pH. In contrast, E. coli-produced NanA, NanB, and NanC were isolated as calcium insensitive monomers with stabilities that were more resistant to pH changes. Using a synthetic substrate (MUNANA), all neuraminidases showed similar pH optimums (pH 6-7) that were primarily defined by changes in catalytic rate rather than substrate binding affinity. Upon using a multivalent substrate (fetuin sialoglycans), much higher specific activities were observed for pneumococcal neuraminidases that contain an additional lectin domain. In virions, N1 and especially N2 also showed enhanced specific activity toward fetuin that was lost upon the addition of detergent, indicating the sialic acid-binding capacity of neighboring hemagglutinin molecules likely contributes to catalysis of natural multivalent substrates. These results demonstrate that influenza and pneumococcal neuraminidases have evolved similar yet distinct strategies to optimize their catalytic activity.


Asunto(s)
Virus de la Influenza A , Ácido N-Acetilneuramínico , Neuraminidasa , Calcio/metabolismo , Catálisis , Escherichia coli/enzimología , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Streptococcus pneumoniae/enzimología , Virus de la Influenza A/enzimología , Animales , Línea Celular
5.
J Virol ; 96(5): e0197921, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019720

RESUMEN

Influenza A virus (IAV) contains a segmented RNA genome that is transcribed and replicated by the viral RNA polymerase in the cell nucleus. Replicated RNA segments are assembled with viral polymerase and oligomeric nucleoprotein into viral ribonucleoprotein (vRNP) complexes which are exported from the nucleus and transported across the cytoplasm to be packaged into progeny virions. Host GTPase Rab11a associated with recycling endosomes is believed to contribute to this process by mediating the cytoplasmic transport of vRNPs. However, how vRNPs interact with Rab11a remains poorly understood. In this study, we utilized a combination of biochemical, proteomic, and biophysical approaches to characterize the interaction between the viral polymerase and Rab11a. Using pulldown assays, we showed that vRNPs but not complementary RNPs (cRNPs) from infected cell lysates bind to Rab11a. We also showed that the viral polymerase directly interacts with Rab11a and that the C-terminal two-thirds of the PB2 polymerase subunit (PB2-C) comprising the cap-binding, mid-link, 627, and nuclear localization signal (NLS) domains mediate this interaction. Small-angle X-ray scattering (SAXS) experiments confirmed that PB2-C associates with Rab11a in solution forming a compact folded complex with a 1:1 stoichiometry. Furthermore, we demonstrate that the switch I region of Rab11a, which has been shown to be important for binding Rab11 family-interacting proteins (Rab11-FIPs), is also important for PB2-C binding, suggesting that IAV polymerase and Rab11-FIPs compete for the same binding site. Our findings expand our understanding of the interaction between the IAV polymerase and Rab11a in the cytoplasmic transport of vRNPs. IMPORTANCE The influenza virus RNA genome segments are replicated in the cell nucleus and are assembled into viral ribonucleoprotein (vRNP) complexes with viral RNA polymerase and nucleoprotein (NP). Replicated vRNPs need to be exported from the nucleus and trafficked across the cytoplasm to the cell membrane, where virion assembly takes place. The host GTPase Rab11a plays a role in vRNP trafficking. In this study, we showed that the viral polymerase directly interacts with Rab11a mediating the interaction between vRNPs and Rab11a. We mapped this interaction to the C-terminal domains of the PB2 polymerase subunit and the switch I region of Rab11a. Identifying the exact site of Rab11a binding on the viral polymerase could uncover a novel target site for the development of an influenza antiviral drug.


Asunto(s)
GTP Fosfohidrolasas , Virus de la Influenza A , ARN Viral , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Replicación Viral , GTP Fosfohidrolasas/metabolismo , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Nucleoproteínas/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas/genética , Proteómica , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Dispersión del Ángulo Pequeño , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
6.
J Virol ; 96(6): e0198221, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35045267

RESUMEN

Many oseltamivir resistance mutations exhibit fitness defects in the absence of drug pressure that hinders their propagation in hosts. Secondary permissive mutations can rescue fitness defects and facilitate the segregation of resistance mutations in viral populations. Previous studies have identified a panel of permissive or compensatory mutations in neuraminidase (NA) that restore the growth defect of the predominant oseltamivir resistance mutation (H275Y) in H1N1 influenza A virus. In prior work, we identified a hyperactive mutation (Y276F) that increased NA activity by approximately 70%. While Y276F had not been previously identified as a permissive mutation, we hypothesized that Y276F may counteract the defects caused by H275Y by buffering its reduced NA expression and enzyme activity. In this study, we measured the relative fitness, NA activity, and surface expression, as well as sensitivity to oseltamivir, for several oseltamivir resistance mutations, including H275Y in the wild-type and Y276F genetic background. Our results demonstrate that Y276F selectively rescues the fitness defect of H275Y by restoring its NA surface expression and enzymatic activity, elucidating the local compensatory structural impacts of Y276F on the adjacent H275Y. IMPORTANCE The potential for influenza A virus (IAV) to cause pandemics makes understanding evolutionary mechanisms that impact drug resistance critical for developing surveillance and treatment strategies. Oseltamivir is the most widely used therapeutic strategy to treat IAV infections, but mutations in IAV can lead to drug resistance. The main oseltamivir resistance mutation, H275Y, occurs in the neuraminidase (NA) protein of IAV and reduces drug binding as well as NA function. Here, we identified a new helper mutation, Y276F, that can rescue the functional defects of H275Y and contribute to the evolution of drug resistance in IAV.


Asunto(s)
Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A , Oseltamivir , Proteínas Virales , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Mutación , Neuraminidasa/genética , Neuraminidasa/metabolismo , Oseltamivir/farmacología , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Cell Mol Life Sci ; 78(23): 7237-7256, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34677644

RESUMEN

Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA polymerase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.


Asunto(s)
Inmunidad Innata/inmunología , Inmunomodulación/inmunología , Virus de la Influenza A/enzimología , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Mitocondrias/metabolismo , ARN Viral/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/fisiología , Replicación Viral/genética
9.
Nucleic Acids Res ; 49(15): 8796-8810, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34379778

RESUMEN

During RNA elongation, the influenza A viral (IAV) RNA-dependent RNA polymerase (RdRp) residues in the active site interact with the triphosphate moiety of nucleoside triphosphate (NTP) for catalysis. The molecular mechanisms by which they control the rate and fidelity of NTP incorporation remain elusive. Here, we demonstrated through enzymology, virology and computational approaches that the R239 and K235 in the PB1 subunit of RdRp are critical to controlling the activity and fidelity of transcription. Contrary to common beliefs that high-fidelity RdRp variants exert a slower incorporation rate, we discovered a first-of-its-kind, single lysine-to-arginine mutation on K235 exhibited enhanced fidelity and activity compared with wild-type. In particular, we employed a single-turnover NTP incorporation assay for the first time on IAV RdRp to show that K235R mutant RdRp possessed a 1.9-fold increase in the transcription activity of the cognate NTP and a 4.6-fold increase in fidelity compared to wild-type. Our all-atom molecular dynamics simulations further elucidated that the higher activity is attributed to the shorter distance between K235R and the triphosphate moiety of NTP compared with wild-type. These results provide novel insights into NTP incorporation and fidelity control mechanisms, which lay the foundation for the rational design of IAV vaccine and antiviral targets.


Asunto(s)
Virus de la Influenza A/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Transcripción Genética , Proteínas Virales/química , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Células de Riñón Canino Madin Darby , Mutación , ARN Polimerasa Dependiente del ARN/genética , Alineación de Secuencia , Proteínas Virales/genética
10.
Eur J Med Chem ; 221: 113567, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34082224

RESUMEN

Neuraminidase (NA) inhibitors play a prime role in treating influenza. However, a variety of viruses containing mutant NAs have developed severe drug resistance towards NA inhibitors, so it is of crucial significance to solve this problem. Encouraged by urea-containing compound 12 disclosed by our lab, we designed a series of oseltamivir derivatives bearing hydrazide fragment for targeting the 150 cavity. Among the synthesized compounds, compound 17a showed 8.77-fold, 4.12-fold, 203-fold and 6.23-fold more potent activity than oseltamivir carboxylate against NAs from H5N1, H1N1, H5N1-H274Y, H1N1-H274Y, respectively. Meanwhile, the best compound 17a exhibited satisfactory metabolic stability in vitro. This study offers an important reference for the structural optimization of oseltamivir aiming at potent inhibition against H274Y mutant of NAs.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Hidrazinas/farmacología , Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/farmacología , Proteínas Virales/antagonistas & inhibidores , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Hidrazinas/síntesis química , Hidrazinas/química , Virus de la Influenza A/enzimología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mutación , Neuraminidasa/genética , Neuraminidasa/metabolismo , Oseltamivir/síntesis química , Oseltamivir/química , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Bioconjug Chem ; 32(8): 1548-1553, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34161726

RESUMEN

The last step in influenza virus replication involves the assembly of viral components on the infected cell's plasma membrane followed by budding of intact virus from the host cell surface. Because viral neuraminidase and hemagglutinin are both inserted into the host cell's membrane during this process, influenza virus-infected cells are distinguished from uninfected cells by the presence of viral neuraminidase and hemagglutinin on their cell surfaces. In an effort to exploit this difference in cell surface markers for development of diagnostic and therapeutic agents, we have modified an influenza neuraminidase inhibitor, zanamivir, for targeting of attached imaging and therapeutic agents selectively to influenza viruses and virus-infected cells. We have designed here a zanamivir-conjugated rhodamine dye that allows visual monitoring of binding, internalization, and intracellular trafficking of the fluorescence-labeled neuraminidase in virus-infected cells. We also synthesize a zanamivir-99mTc radioimaging conjugate that permits whole body imaging of the virus's biodistribution and abundance in infected mice. Finally, we create both a zanamivir-targeted cytotoxic drug (i.e., zanamivir-tubulysin B) and a viral neuraminidase-targeted CAR T cell and demonstrate that they are both able to kill viral neuraminidase-expressing cells without damaging healthy cells. Taken together, these data suggest that the influenza virus neuraminidase inhibitor, zanamivir, can be exploited to improve the diagnosis, imaging, and treatment of influenza virus infections.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico por imagen , Neuraminidasa/análisis , Proteínas Virales/análisis , Animales , Inhibidores Enzimáticos/análisis , Células HEK293 , Humanos , Virus de la Influenza A/enzimología , Ratones , Neuraminidasa/antagonistas & inhibidores , Imagen Óptica , Infecciones por Orthomyxoviridae/diagnóstico por imagen , Proteínas Virales/antagonistas & inhibidores , Zanamivir/análisis
12.
FASEB J ; 35(6): e21630, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33982347

RESUMEN

The acidic nuclear phosphoprotein 32 family member A (ANP32A) is a cellular host factor that determines the host tropism of the viral polymerase (vPol) of avian influenza viruses (AIVs). Compared with human ANP32A (hANP32A), chicken ANP32A contains an additional 33 amino acid residues (176-208) duplicated from amino acid residues 149-175 (27 residues), suggesting that these residues could be involved in increasing vPol activity by strengthening interactions between ANP32A and vPol. However, the molecular interactions and functional roles of the 27 residues within hANP32A during AIV vPol activity remain unclear. Here, we examined the functional role of 27 residues of hANP32A based on comparisons with other human (h) ANP32 family members. It was notable that unlike hANP32A and hANP32B, hANP32C could not support vPol activity or replication of AIVs, despite the fact that hANP32C shares a higher sequence identity with hANP32A than hANP32B. Pairwise comparison between hANP32A and hANP32C revealed that Asp149 (D149) and Asp152 (D152) are involved in hydrogen bonding and electrostatic interactions, respectively, which support vPol activity. Mutation of these residues reduced the interaction between hANP32A and vPol. Finally, we demonstrated that precise substitution of the identified residues within chicken ANP32A via homology-directed repair using the CRISPR/Cas9 system resulted in a marked reduction of viral replication in chicken cells. These results increase our understanding of ANP32A function and may facilitate the development of AIV-resistant chickens via precise modification of residues within ANP32A.


Asunto(s)
Ácido Aspártico/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Virus de la Influenza A/enzimología , Mutación , Proteínas Nucleares/metabolismo , Infecciones por Orthomyxoviridae/virología , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Ácido Aspártico/genética , Pollos , ADN Polimerasa Dirigida por ADN/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Infecciones por Orthomyxoviridae/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Homología de Secuencia , Proteínas Virales/genética
13.
Virology ; 559: 145-155, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887645

RESUMEN

PB1 functions as the catalytic subunit of influenza virus RNA polymerase complex and plays an essential role in viral RNA transcription and replication. To determine plasticity in the PB1 enzymatic site and map catalytically important residues, 658 mutants were constructed, each with one to seven mutations in the enzymatic site of PB1. The polymerase activities of these mutants were quantified using a minigenome assay, and polymerase activity-associated residues were identified using sparse learning. Results showed that polymerase activities are affected by the residues not only within the conserved motifs, but also across the inter-motif regions of PB1, and the latter are primarily located at the base of the palm domain, a region that is conserved in avian PB1 but with high sequence diversity in swine PB1. Our results suggest that mutations outside the PB1 conserved motifs may affect RNA replication and could be associated with influenza virus host adaptation.


Asunto(s)
Dominio Catalítico/genética , Variación Genética , Virus de la Influenza A/genética , ARN Viral/genética , Proteínas Virales/genética , Replicación Viral/genética , Secuencias de Aminoácidos/genética , Animales , Biocatálisis , ARN Polimerasas Dirigidas por ADN/metabolismo , Perros , Células HEK293 , Humanos , Virus de la Influenza A/enzimología , Aprendizaje Automático , Células de Riñón Canino Madin Darby , Mutación , Porcinos
14.
PLoS Pathog ; 17(4): e1009490, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891662

RESUMEN

Repeated outbreaks due to H3N1 low pathogenicity avian influenza viruses (LPAIV) in Belgium were associated with unusually high mortality in chicken in 2019. Those events caused considerable economic losses and prompted restriction measures normally implemented for eradicating high pathogenicity avian influenza viruses (HPAIV). Initial pathology investigations and infection studies suggested this virus to be able to replicate systemically, being very atypical for H3 LPAIV. Here, we investigate the pathogenesis of this H3N1 virus and propose a mechanism explaining its unusual systemic replication capability. By intravenous and intracerebral inoculation in chicken, we demonstrate systemic spread of this virus, extending to the central nervous system. Endoproteolytic viral hemagglutinin (HA) protein activation by either tissue-restricted serine peptidases or ubiquitous subtilisin-like proteases is the functional hallmark distinguishing (H5 or H7) LPAIV from HPAIV. However, luciferase reporter assays show that HA cleavage in case of the H3N1 strain in contrast to the HPAIV is not processed by intracellular proteases. Yet the H3N1 virus replicates efficiently in cell culture without trypsin, unlike LPAIVs. Moreover, this trypsin-independent virus replication is inhibited by 6-aminohexanoic acid, a plasmin inhibitor. Correspondingly, in silico analysis indicates that plasminogen is recruitable by the viral neuraminidase for proteolytic activation due to the loss of a strongly conserved N-glycosylation site at position 130. This mutation was shown responsible for plasminogen recruitment and neurovirulence of the mouse brain-passaged laboratory strain A/WSN/33 (H1N1). In conclusion, our findings provide good evidence in natural chicken strains for N1 neuraminidase-operated recruitment of plasminogen, enabling systemic replication leading to an unusual high pathogenicity phenotype. Such a gain of function in naturally occurring AIVs representing an established human influenza HA-subtype raises concerns over potential zoonotic threats.


Asunto(s)
Brotes de Enfermedades/veterinaria , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Neuraminidasa/metabolismo , Plasminógeno/metabolismo , Enfermedades de las Aves de Corral/virología , Animales , Pollos , Glicosilación , Virus de la Influenza A/enzimología , Virus de la Influenza A/fisiología , Neuraminidasa/genética , Replicación Viral
15.
Molecules ; 26(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33673017

RESUMEN

Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked by disrupting the interaction between the PB2 domain and the five-prime cap. An inhibitor of this interaction called pimodivir (VX-787) recently entered the third phase of clinical trial; however, several mutations in PB2 that cause resistance to pimodivir were observed. First major mutation, F404Y, causing resistance was identified during preclinical testing, next the mutation M431I was identified in patients during the second phase of clinical trials. The mutation H357N was identified during testing of IAV strains at Centers for Disease Control and Prevention. We set out to provide a structural and thermodynamic analysis of the interactions between cap-binding domain of PB2 wild-type and PB2 variants bearing these mutations and pimodivir. Here we present four crystal structures of PB2-WT, PB2-F404Y, PB2-M431I and PB2-H357N in complex with pimodivir. We have thermodynamically analysed all PB2 variants and proposed the effect of these mutations on thermodynamic parameters of these interactions and pimodivir resistance development. These data will contribute to understanding the effect of these missense mutations to the resistance development and help to design next generation inhibitors.


Asunto(s)
Farmacorresistencia Viral/efectos de los fármacos , Virus de la Influenza A/enzimología , Subunidades de Proteína/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Pirroles/química , Pirroles/farmacología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/antagonistas & inhibidores , Cristalografía por Rayos X , Virus de la Influenza A/efectos de los fármacos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutación/genética , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Teoría Cuántica , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , Termodinámica , Proteínas Virales/química , Proteínas Virales/metabolismo
16.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673431

RESUMEN

In this study, we have introduced newly synthesized substituted benzothiazole based berberine derivatives that have been analyzed for their in vitro and in silico biological properties. The activity towards various kinds of influenza virus strains by employing the cytopathic effect (CPE) and sulforhodamine B (SRB) assay. Several berberine-benzothiazole derivatives (BBDs), such as BBD1, BBD3, BBD4, BBD5, BBD7, and BBD11, demonstrated interesting anti-influenza virus activity on influenza A viruses (A/PR/8/34, A/Vic/3/75) and influenza B viral (B/Lee/40, and B/Maryland/1/59) strain, respectively. Furthermore, by testing neuraminidase activity (NA) with the neuraminidase assay kit, it was identified that BBD7 has potent neuraminidase activity. The molecular docking analysis further suggests that the BBD1-BBD14 compounds' antiviral activity may be because of interaction with residues of NA, and the same as in oseltamivir.


Asunto(s)
Benzotiazoles/farmacología , Berberina/farmacología , Simulación del Acoplamiento Molecular , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Benzotiazoles/uso terapéutico , Berberina/análogos & derivados , Berberina/uso terapéutico , Línea Celular , Efecto Citopatogénico Viral , Perros , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Infecciones por Orthomyxoviridae/enzimología , Proteínas Virales/antagonistas & inhibidores
17.
Antiviral Res ; 188: 105036, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577807

RESUMEN

Baloxavir marboxil has been used for influenza treatment since March 2018 in Japan. After baloxavir treatment, the most frequently detected substitution is Ile38Thr in polymerase acidic protein (PA/I38T), and this substitution reduces baloxavir susceptibility in influenza A viruses. To rapidly investigate the frequency of PA/I38T in influenza A (H1N1)pdm09 and A (H3N2) viruses in clinical samples, we established a rapid real-time system to detect single nucleotide polymorphisms in PA, using cycling probe real-time PCR. We designed two sets of probes that were labeled with either 6-carboxyfluorescein (FAM) or 6-carboxy-X-rhodamine (ROX) to identify PA/I38 (wild type strain) or PA/I38T, respectively. The established cycling probe real-time PCR system showed a dynamic linear range of 101 to 106 copies with high sensitivity in plasmid DNA controls. This real-time PCR system discriminated between PA/I38T and wild type viruses well. During the 2018/19 season, 377 influenza A-positive clinical samples were collected in Japan before antiviral treatment. Using our cycling probe real-time PCR system, we detected no (0/129, 0.0%) influenza A (H1N1)pdm09 viruses with PA/I38T substitutions and four A (H3N2) (4/229, 1.7%) with PA/I38T substitution prior to treatment. In addition, we found PA/I38T variant in siblings who did not received baloxavir treatment during an infection caused by A (H3N2) that afflicted the entire family. Although human-to-human transmission of PA/I38T variant may have occurred in a closed environment, the prevalence of this variant in influenza A viruses was still limited. Our cycling probe-PCR system is thus useful for antiviral surveillance of influenza A viruses possessing PA/I38T.


Asunto(s)
Antivirales/farmacología , Dibenzotiepinas/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Morfolinas/farmacología , Piridonas/farmacología , ARN Polimerasa Dependiente del ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Triazinas/farmacología , Proteínas Virales/genética , Sustitución de Aminoácidos , Animales , Línea Celular , Humanos , Virus de la Influenza A/enzimología , Virus de la Influenza A/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , ARN Viral/biosíntesis , Replicación Viral/efectos de los fármacos
18.
J Med Virol ; 93(6): 3465-3472, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32827314

RESUMEN

Influenza A virus (IAV) causes great morbidity and mortality worldwide every year. However, there are only a limited number of drugs clinically available against IAV infection. Further, emergence of drug-resistant strains can render those drugs ineffective. Thus there is an unmet medical need to develop new anti-influenza agents. In this study, we show that punicalagin from plants possesses strong anti-influenza activity with a low micromolar IC50 value in tissue culture. Using a battery of bioassays such as single-cycle replication assay, neuraminidase (NA) inhibition assay, and virus yield reduction assay, we demonstrate that the primary mechanism of action (MOA) of punicalagin is the NA-mediated viral release. Moreover, punicalagin can inhibit replication of different strains of influenza A and B viruses, including oseltamivir-resistant virus (NA/H274Y), indicating that punicalagin is a broad spectrum antiviral against both IAV and IBV. Further, although punicalagin targets NA like oseltamivir, it has a different MOA. These results suggest that punicalagin is an influenza NA inhibitor that may be further developed as a novel antiviral against influenza viruses.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Taninos Hidrolizables/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Animales , Perros , Virus de la Influenza A/enzimología , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Replicación Viral/efectos de los fármacos
19.
Food Chem ; 334: 127508, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711265

RESUMEN

Quercetin, a potential polyphenolic which possesses several biological effects. The influenza virus polymerase basic 2 (PB2) subunit of RNA polymerase responsible for replication, degree of virus conservation and active target site for designing specific antivirals. The quercetin derivatives downloaded from PubChem were screened using PyRX software configured with Vina Wizard, targeted on cap-binding site of the PB2 of influenza viral RNA polymerase. Among the PubChem library (total 97,585,747 compounds), 410 quercetin derivatives were screened using molecular docking (affinity: <-9.0 kcal) for their drug-likeness and in vitro cytopathic effect by Sulforhodamine B (SRB) assay. Among all quercetin derivatives, quercetin 3'-glucuronide (Q3G) showed strongest binding affinity towards cap-binding site of the PB2 subunit with -9.6 kcal of binding affinity and 0.00054 mM of Ki value, while quercetin 3'-glucuronide (Q7G) was presented highest anti-influenza activity with 2.10 ± 0.05 of IC50 on influenza A/PR/8/34 virus and non-cytotoxic effect as CC50 > 100 µg/mL.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Quercetina/análogos & derivados , Animales , Antivirales/química , Antivirales/metabolismo , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Perros , Humanos , Virus de la Influenza A/enzimología , Betainfluenzavirus/efectos de los fármacos , Células de Riñón Canino Madin Darby , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Quercetina/química , Quercetina/metabolismo , Quercetina/farmacología , Termodinámica
20.
Eur J Med Chem ; 209: 112944, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328103

RESUMEN

Influenza viruses (Flu) are responsible for seasonal epidemics causing high rates of morbidity, which can dramatically increase during severe pandemic outbreaks. Antiviral drugs are an indispensable weapon to treat infected people and reduce the impact on human health, nevertheless anti-Flu armamentarium still remains inadequate. In search for new anti-Flu drugs, our group has focused on viral RNA-dependent RNA polymerase (RdRP) developing disruptors of PA-PB1 subunits interface with the best compounds characterized by cycloheptathiophene-3-carboxamide and 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide scaffolds. By merging these moieties, two very interesting hybrid compounds were recently identified, starting from which, in this paper, a series of analogues were designed and synthesized. In particular, a thorough exploration of the cycloheptathiophene-3-carboxamide moiety led to acquire important SAR insight and identify new active compounds showing both the ability to inhibit PA-PB1 interaction and viral replication in the micromolar range and at non-toxic concentrations. For few compounds, the ability to efficiently inhibit PA-PB1 subunits interaction did not translate into anti-Flu activity. Chemical/physical properties were investigated for a couple of compounds suggesting that the low solubility of compound 14, due to a strong crystal lattice, may have impaired its antiviral activity. Finally, computational studies performed on compound 23, in which the phenyl ring suitably replaced the cycloheptathiophene, suggested that, in addition to hydrophobic interactions, H-bonds enhanced its binding within the PAC cavity.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Pirimidinas/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Triazoles/química , Antivirales/química , Humanos , Virus de la Influenza A/enzimología , Simulación del Acoplamiento Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...